
Techniques to Enhance a QUBO Solver For Permutation-Based
Combinatorial Optimization

Siong Thye Goh

stgoh@smu.edu.sg

Singapore Management University

Singapore

Jianyuan Bo

jybo.2020@phdcs.smu.edu.sg

Singapore Management University

Singapore

Sabrish Gopalakrishnan

sabrishg@smu.edu.sg

Singapore Management University

Singapore

Hoong Chuin Lau
∗

hclau@smu.edu.sg

Singapore Management University

Singapore

ABSTRACT
Many combinatorial optimization problems can be formulated as a

problem to determine the order of sequence or to find a correspond-

ing mapping of the objects. We call such problems permutation-

based optimization problems. Many such problems can be formu-

lated as a quadratic unconstrained binary optimization (QUBO)

or Ising model by introducing a penalty coefficient to the permu-

tation constraint terms. While classical and quantum annealing

approaches have been proposed to solve QUBOs to date, they face

issues with optimality and feasibility. Here we treat a given QUBO

solver as a black box and propose techniques to enhance its perfor-

mance. First, to ensure an effective search for good quality solutions,

a smooth energy landscape is needed; we propose a data scaling

approach that reduces the amplitudes of the input without compro-

mising optimality. Second, we need to tune the penalty coefficient.

In this paper, we illustrate that for certain problems, it suffices to

tune the parameter by performing random sampling on the penalty

coefficients to achieve good performance. Finally, to handle possible

infeasibility of the solution, we introduce a polynomial-time pro-

jection algorithm. We apply these techniques along with a divide-

and-conquer strategy to solve some large-scale permutation-based

problems and present results for TSP and QAP.

CCS CONCEPTS
•Mathematics of computing→ Solvers; • Applied computing
→ Operations research.

KEYWORDS
QUBO, combinatorial optimization, traveling salesman problem,

QAP, scheduling, routing, permutation constraint

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9268-6/22/07. . . $15.00

https://doi.org/10.1145/3520304.3533982

ACM Reference Format:
Siong Thye Goh, Jianyuan Bo, Sabrish Gopalakrishnan, and Hoong Chuin

Lau. 2022. Techniques to Enhance a QUBO Solver For Permutation-Based

Combinatorial Optimization. In Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3520304.

3533982

1 INTRODUCTION
Combinatorial optimization problems such as the Traveling Sales-

man Problem (TSP), the Flow Shop Scheduling Problem (FSP), and

the Quadratic Assignment Problem (QAP) are NP-hard problems

underlying many route planning and machine scheduling prob-

lems [28]. Traditionally these problems are modeled as integer

programs and solved with mathematical programming solvers such

as CPLEX[8] and Gurobi[11]. These solvers are based on the branch

and bound paradigm which are exponential time algorithms in the

worst case.

Recently, motivated by the promise of quantum computing, an al-

ternative approach is gaining traction. The idea is to first formulate

the problems as Ising models (or equivalently, quadratic uncon-

strained binary optimization problems (QUBO) [18], [5]), which are

amenable to quantum annealing-based solutions. A QUBO problem

can be described as

min

𝑥 ∈{0,1}𝑛
𝑥𝑇𝑄𝑥.

It is an NP-hard problem. Special quantum hardware such as D-

Wave’s quantum annealer has been developed that demonstrates

effectiveness in solving targeted problems like Max-SAT and Max

Cut (see e.g. [31]). Nurse-scheduling problem and flight gate assign-

ment problem have also been solved in [14] and [24] respectively.

Some other interesting problems have been formulated as a QUBO

as well. In [22], the problem of estimating the density of states of

Boolean satisfiability problem is formulated as a QUBO.

On a related front, technology companies have developed fast

QUBO solvers (QS) such as Alpha-QUBO [10] (a software solver)

and Fujitsu’s Digital Annealer (DA) [3], a CMOS machine with

specialized hardware architecture. These QUBO solvers face several

challenges including hardware limitations and no guarantee of

solution quality.

Currently, these solvers assume that the given problem is un-

constrained, although it has been proven in [18] that a constrained

problem such as those stated in a typical integer programming

2223

https://orcid.org/0000-0001-7563-0961
https://orcid.org/0000-0002-7113-2508
https://orcid.org/0000-0002-5326-411X
https://doi.org/10.1145/3520304.3533982
https://doi.org/10.1145/3520304.3533982
https://doi.org/10.1145/3520304.3533982

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Siong Thye Goh, Jianyuan Bo, Sabrish Gopalakrishnan, and Hoong Chuin Lau

(IP) can be converted to an unconstrained problem using a penalty

method[23]. The penalty method achieves this by ensuring that an

infeasible solution is not the optimal solution. More details on how

to convert a quadratic binary optimization problem with permu-

tation constraints to a QUBO will be covered in the background

section.

In this paper, we focus on permutation-based combinatorial opti-

mization problems, i.e. problems whose constraints are permutation

constraints. For a routing problem (such as TSP), this corresponds

to deciding the order of nodes to visit; for a scheduling problem

(such as FSP), this corresponds to deciding the order of tasks to be

served by a machine. It is known that these problems have ded-

icated or handcrafted heuristics that perform well: for example

for TSP, Concorde [2] is known to be an effective dedicated solver

for TSP. For FSP, there are standard heuristics such as the NEH

algorithm, such as [19]; while for QAP, various handcrafted meta-

heuristics have been proposed (see for example [17]). Heuristics

and dedicated solvers may not perform well in specific problem

instances, e.g. some hard TSP instances were listed [13], and there

is no one-size-fits-all heuristic for QAP benchmark instances.

There are a few challenges that we have to address to use the

solvers effectively. These challenges are

• The data describing the QUBO varies greatly in magnitude

and a QUBO solver focuses on only certain bits as a result.

• Choosing the right penalty coefficient so that we obtain

high-quality solutions.

• Solution returned by QUBO solver is not feasible for the

original problem, and

• Problem size constraints

The research question that we address in this paper is what are

the possible techniques to overcome these challenges. We address

these challenges for permutation-based problems as follows:

We introduce a data scaling technique to control the magnitude

of the data and yet ensuring that the problem is equivalent to the

original problem in Section 3.1. In the penalty method, we have

a penalty parameter 𝐴 in Equation 3 where it plays an important

role in the solution quality. While theoretically, a large 𝐴 ensures

that the resulting QUBO is equivalent to the original problem;

in practice, it is observed that there is a ‘Goldilocks region’ that

contains penalty values that work well as discussed in [10], if it is

too large, it leads to sub-optimality while if it is too small, it leads

to infeasibility. Hence, we investigate penalty coefficient tuning to

obtain good performance in Section 3.2. Furthermore, the solution

that we obtained from a QUBO solver need not be feasible for

the original problem. We discuss how to compute projection to

ensure that the solution that we obtain is feasible in 3.3. In Figure

1, we present a framework to solve large scale permutation-based

optimization problem.

More precisely, we show in this paper that by incorporating our

techniques, we can enhance the performance of a black-box heuris-

tic QUBO solver that is not guaranteed to solve QUBO instances

optimally. An example is the DA which is based on simulated an-

nealing with a simple bit-flip neighborhood. In order to tackle

large-scale problems that is beyond what the QUBO solver is capa-

ble of solving (due to hardware limitation), a divide-and-conquer

approach can be used to decompose the problem into sub-QUBOs.

Note that our proposed techniques are hardware-agnostic, and as

the quantum hardware matures, QUBO solvers enhanced with our

proposed techniques can provide a strong competitor to commercial

exact solvers like CPLEX and GUROBI.

Our key contributions are as follows:

• To enhance solution quality, we propose a data-scaling

method to convert an instance to one with smaller cost

variations while preserving the ranking of solutions for the

original problem instance for QUBO with permutation con-

straint, and prove that our data scaling method applies to all

permutation-based problems.

• To ensure feasibility, we propose a method to project in-

feasible solutions obtained by the QUBO solver to feasible

solutions using a polynomial-time weighted assignment al-

gorithm.

• To balance between quality and feasibility, we study the ef-

fects of the penalty parameters in the QUBO formulation

and compare different parameter tuning approaches experi-

mentally.

• We apply our techniques to the DA QUBO solver to solve

large Euclidean TSP (E-TSP) and Quadratic Assignment Prob-

lem (QAP) instances via a divide-and-conquer process. We

respectively evaluate our approach by comparing the Con-

corde solver (for E-TSP) and the qbsolv framework running

the same QUBO solver (for QAP).

2 PERMUTATION-BASED PROBLEMS
A permutation-based combinatorial optimization problem involves

permuting 𝑛 objects to minimize a certain objective function. Com-

mon examples of permutation-based problems include TSP, FSP

and QAP. Such problems can be modeled as minimizing a quadratic

objective function of the following form:

min

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑢=1

𝑛∑︁
𝑣=1

𝑥𝑢,𝑖𝑄𝑢,𝑖,𝑣, 𝑗𝑥𝑣,𝑗 (1)

subject to

∑𝑛
𝑢=1 𝑥𝑢,𝑖 = 1,∀𝑖 ∈ {1, . . . , 𝑛} and ∑𝑛

𝑖=1 𝑥𝑢,𝑖 = 1,∀𝑢 ∈
{1, . . . , 𝑛} where 𝑥𝑢,𝑖 takes value 1 if object 𝑢 is assigned to slot

𝑖 and it takes value 0 otherwise. The two constraints ensure that

each object is given a slot and vice versa. We call the first group

of constraint the column sum constraints and the second group of

constraint the row sum constraints.

We can convert this formulation to an unconstrained QUBO

model by squaring the constraint violations and adding them to

the original objective function:

min

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑢=1

𝑛∑︁
𝑣=1

𝑥𝑢,𝑖𝑄𝑢,𝑖,𝑣, 𝑗𝑥𝑣,𝑗 (2)

+𝐴


𝑛∑︁

𝑢=1

(
𝑛∑︁
𝑖=1

𝑥𝑢,𝑖 − 1

)
2

+
𝑛∑︁
𝑖=1

(
𝑛∑︁

𝑢=1

𝑥𝑢,𝑖 − 1

)
2 (3)

where 𝐴 is a single parameter that we have to tune to penalize

constraint violation. Henceforth, we call a QUBO expressed in that

form a "permutation QUBO".

For this work, we choose to tune a single parameter 𝐴 following

the formulation given in [18], although one could have assigned

2224

Techniques to Enhance a QUBO Solver For Permutation-Based Combinatorial Optimization GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

a new parameter for each of the 2𝑛 constraints. By doing so, the

number of parameters to tune does not grow as𝑛 increases. One can

observe that the symmetry in the permutation constraints suggests

that we do not have to emphasize some constraints over the others

intuitively.

3 TECHNIQUES TO IMPROVE SOLUTION
QUALITY

In this section, we introduce our techniques to perform data scaling,

investigate the effect of parameter tuning, and propose a projection

scheme to improve the quality of solution when we use a QUBO

annealing solver.

3.1 Data Scaling
In [12], it has been shown that for the TSP problem, one can reduce

all the distances to or from a particular city by a constant and

preserve the ranking of the solutions. This result can be extended

to the quadratic binary optimization problem with permutation

constraints as follows.

Given the optimization problem (1), pick any 𝑗 ∈ {1, . . . , 𝑛} and
define �̃� as follows:

∀𝑢, 𝑖, 𝑣 ∈ {1, . . . , 𝑛}, �̃�𝑢,𝑖,𝑣, 𝑗 =

{
𝑄𝑢,𝑖,𝑣, 𝑗 if 𝑗 ≠ 𝑗

𝑄𝑢,𝑖,𝑣, 𝑗 + Δ if 𝑗 = 𝑗

That is, we change those matrix entries with index 𝑗 = 𝑗 by a

constant Δ. We call this process data scaling.

Consider the resulting scaled optimization problem:

min

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑢=1

𝑛∑︁
𝑣=1

𝑥𝑢,𝑖�̃�𝑢,𝑖, 𝑗,𝑣𝑥 𝑗,𝑣 (4)

subject to

∑
𝑢∈𝐼 𝑥𝑢,𝑖 = 1 and

∑
𝑖∈𝐽 𝑥𝑢,𝑖 = 1.

The following lemma shows that the ranking of optimality is

preserved under data scaling:

Lemma 1. A feasible solution 𝑦 that is better than feasible 𝑧 for
optimization problem (1) remains better for optimization problem
(4). That is if 𝑦 and 𝑧 are feasible solution optimization problem (1),
then 𝑦𝑇𝑄𝑦 ≤ 𝑧𝑇𝑄𝑧 =⇒ 𝑦𝑇 �̃�𝑦 ≤ 𝑧𝑇 �̃�𝑧.

Note that our theoretical result can be further generalized to

constraint of the form of

∑
𝑖∈𝐼 𝑥𝑖, 𝑗 = 𝐵 and

∑
𝑖∈𝐼 𝑥𝑖, 𝑗 = 𝐶 where

𝐵 and 𝐶 satisfy 𝐵 |𝐽 | = 𝐶 |𝐼 |. We state and prove the more general

version of the result here:

Consider the following quadratic programming problem with

binary variables.

min

∑︁
𝑖,𝑢∈𝐼
𝑣, 𝑗 ∈𝐽

𝑥𝑖, 𝑗𝑄𝑖, 𝑗,𝑢,𝑣𝑥𝑢,𝑣 (5)

subject to

∑
𝑖∈𝐼 𝑥𝑖, 𝑗 = 𝐵 and

∑
𝑗 ∈𝐽 𝑥𝑖, 𝑗 = 𝐶 where |𝐽 |𝐵 = |𝐼 |𝐶 . That

is we impose the conditions that the row sum is a constant and the

column sum is another constant and the problem is feasible.

Let 𝑗 ∈ 𝐽 . Consider the optimization problem with perturbed

data:

min

∑︁
𝑖,𝑢∈𝐼
𝑣, 𝑗 ∈𝐽

𝑥𝑖, 𝑗�̃�𝑖, 𝑗,𝑢,𝑣𝑥𝑢,𝑣 (6)

subject to

∑
𝑖∈𝐼 𝑥𝑖, 𝑗 = 𝐵 and

∑
𝑗 ∈𝐽 𝑥𝑖, 𝑗 = 𝐶 .

where

�̃�𝑖, 𝑗,𝑢,𝑣 =

{
𝑄𝑖, 𝑗,𝑢,𝑣 if 𝑗 ≠ 𝑗

𝑄𝑖, 𝑗,𝑢,𝑣 − Δ 𝑖 𝑓 𝑗 = 𝑗

The following lemma shows that the ranking of optimality is

preserved under data scaling:

Lemma 2. A feasible solution𝑦 that is better than feasible solution 𝑧
for optimization problem (5) remains better for optimization problem
(6). That is if 𝑦 and 𝑧 are feasible solution optimization problem (5),
then 𝑦𝑇𝑄𝑦 ≤ 𝑧𝑇𝑄𝑧 =⇒ 𝑦𝑇 �̃�𝑦 ≤ 𝑧𝑇 �̃�𝑧.

Proof. It suffices to show that the difference in the objective

values of the two feasible solutions 𝑦 and 𝑧 remain the same before

and after scaling. More precisely,∑
𝑖,𝑢∈𝐼
𝑣, 𝑗 ∈𝐽

𝑧𝑖, 𝑗𝑄𝑖, 𝑗,𝑢,𝑣𝑧𝑢,𝑣 −
∑

𝑖,𝑢∈𝐼
𝑣, 𝑗 ∈𝐽

𝑦𝑖, 𝑗𝑄𝑖, 𝑗,𝑢,𝑣𝑦𝑢,𝑣

=
∑

𝑖,𝑢∈𝐼
𝑣, 𝑗 ∈𝐽

𝑧𝑖, 𝑗�̃�𝑖, 𝑗,𝑢,𝑣𝑧𝑢,𝑣 −
∑

𝑖,𝑢∈𝐼
𝑣, 𝑗 ∈𝐽

𝑦𝑖, 𝑗�̃�𝑖, 𝑗,𝑢,𝑣𝑦𝑢,𝑣 .

By definition we have,∑︁
𝑖,𝑢∈𝐼
𝑗,𝑣∈𝐽

𝑧𝑖, 𝑗�̃�𝑖, 𝑗,𝑢,𝑣𝑧𝑢,𝑣 − 𝑦𝑖, 𝑗�̃�𝑖, 𝑗,𝑢,𝑣𝑦𝑢,𝑣

=
∑︁
𝑖,𝑢∈𝐼
𝑗,𝑣∈𝐽

[𝑧𝑖, 𝑗𝑄𝑖, 𝑗,𝑢,𝑣𝑧𝑢,𝑣 − 𝑦𝑖, 𝑗𝑄𝑖, 𝑗,𝑢,𝑣𝑦𝑢,𝑣]

− Δ
∑︁

𝑖,𝑢∈𝐼 ,𝑣∈𝐽
[𝑧𝑖, 𝑗𝑧𝑢,𝑣 − 𝑦𝑖, 𝑗𝑦𝑢,𝑣] (7)

Since both solutions 𝑦 and 𝑧 are known to be to be feasible

by our assumption, i.e.

∑
𝑖∈𝐼 𝑦𝑖, 𝑗 =

∑
𝑖∈𝐼 𝑧𝑖, 𝑗 = 𝐵 and

∑
𝑗 ∈𝐽 𝑦𝑖, 𝑗 =∑

𝑗 ∈𝐽 𝑧𝑖, 𝑗 = 𝐶 ,∑︁
𝑖,𝑢∈𝐼
𝑣∈𝐽

𝑦𝑖, 𝑗𝑦𝑢,𝑣 =
∑︁
𝑖∈𝐼

𝑦𝑖, 𝑗

∑︁
𝑢∈𝐼

∑︁
𝑣∈𝐽

𝑦𝑢,𝑣 = 𝐵
∑︁
𝑢∈𝐼

𝐶 = 𝐵𝐶 |𝐼 |

and similarly

∑
𝑖,𝑢∈𝐼
𝑣∈𝐽

𝑧𝑖, 𝑗𝑧𝑢,𝑣 = 𝐵𝐶 |𝐼 |

Hence the term (7) is equal to 0.

□

Specifically when 𝐵 = 𝐶 = 1, and the index set 𝐼 = 𝐽 = {1, . . . , 𝑛},
we have the special case for permutation based optimization prob-

lems which is Lemma 1.

Even though we have shown that we can change the objective

value corresponding to certain indices by a constant and yet the

two problems remain equivalent, it is interesting to determine the

value to be scaled for a particular index 𝑖 , i.e. Δ𝑖 . One approach is to

use the result from [33] to minimize the variance of all the scaled

distances. Intuitively, this corresponds to smoothing the landscape

of the objective function.

2225

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Siong Thye Goh, Jianyuan Bo, Sabrish Gopalakrishnan, and Hoong Chuin Lau

3.2 Penalty Parameter Tuning
As discussed above, tuning the penalty parameter 𝐴 in Equation 3

is an important step in ensuring solution feasibility and quality for

the original problem.

There are multiple approaches for hyper-parameter tuning. Note

that unlike machine learning tasks where the hyper-parameters are

tuned offline with large training sets, in solving combinatorial opti-

mization problems using a QS, each call to the QS takes substantial

time, and hence we need to perform online tuning with as few calls

to the QS as possible. In this paper, we investigate the following

approaches:

Online parameter search: One approach is to perform an

online search for suitable parameters. Bayesian approaches are

model-based approaches that updates the search regions dynami-

cally. Hyperopt [4] and Optuna[1] are frequently used to improve

the quality of the solution iteratively. Model-free approaches based

on Particle Swarm Optimization (PSO) [21] are also able to achieve

reasonable results. Furthermore, while there are multiple hyper-

parameters that can be set for PSO, interestingly we notice that the

performance is not sensitive to them for our problems.

Statistical sampling: Another approach is to draw the parame-

ter values based on some distributions. For example, we can collect

data to learn the average value and standard deviation of penalty

parameter of the problem instance that performs well and fit a

distribution to it. During the prediction stage, we draw samples

from the fitted distribution repeatedly.

The choice of which parameter tuning scheme to use depends

largely on the applications, and in the experiments that follow, we

compare the results of these methods.

3.3 Projection to the Feasible Space
While ideally, QS should return feasible (though not optimal) solu-

tions, this need not always be the case. In this paper, we propose

a projection algorithm to map an infeasible solution to a feasible

solution.

Suppose 𝑧 ∈ {0, 1}𝑛×𝑛 is an infeasible solution returned by QS.

To restore feasibility of the original constrained problem, we solve

the following optimization problem:

min

𝑛∑︁
𝑖, 𝑗=1

(𝑥𝑖, 𝑗 − 𝑧𝑖, 𝑗)2 = min

𝑛∑︁
𝑖, 𝑗=1

((1 − 2𝑧𝑖, 𝑗)𝑥𝑖, 𝑗 + 𝑧𝑖, 𝑗)

subject to

∑𝑛
𝑖=1 𝑥𝑖, 𝑗 = 1,∀𝑗 ∈ {1, . . . , 𝑛} and

∑𝑛
𝑗=1 𝑥𝑖, 𝑗 = 1,∀𝑖 ∈

{1, . . . , 𝑛}.
Note that here 𝑧 would be a given constant and hence this reduces

to the standard Weighted Assignment Problem which can be solved

in 𝑂 (
(
𝑛
𝑘

)
3

) time with the Hungarian algorithm [15].

4 APPLICATION TO TSP AND QAP
QUBO solvers generally suffer limitation on the size of the model

that can be solved directly, e.g. a limit of 2000-qubits for D-Wave,

3000 binary variables for Alpha-QUBO, and 8192 binary variables

for the Generation 2 Digital Annealer (DA) (and 10
5
for the third

generation DA). Even with prospective hardware enhancements,

it is challenging to cope with large-scale combinatorial optimiza-

tion problems as problem size increases. Hence, to date, it is com-

monly agreed that hybrid methods are needed. For instance, in [16],

[29], [30], and [32], hybrid quantum-classical approaches to solving

scheduling problems have been proposed.

Our proposed techniques can be embedded within a divide-and-

conquer framework portrayed in Figure 1. The framework decom-

poses a large permutation-based problem into multiple smaller

instances via a clustering step. The techniques (data scaling, param-

eter tuning, and projections) can then be used to ensure that each

sub-problem can be solved to a high quality. Finally, to obtain a

feasible solution to the original problem, we need to have a stitch-

ing step to combine the solutions into a solution for the original

problem.

Solution

Weight 1 Weight 2 Weight k

Large Instance

Clustering

Cluster 2Cluster 1 Cluster k... ...

Data Scaling Data Scaling Data Scaling... ...

Scaled Data 1 Scaled Data 2 Scaled Data k

Tuning Tuning Tuning

QS QS QS

... ...

... ...

Projected solution
for sub-problem 1

Projected Solution
for sub-problem 2

Projected Solution
for sub-problem k

Stitching

Procedure

Data

Legend

Figure 1: Divide and Conquer framework

When we decompose a large instance into smaller sub-instances,

depending on the specific problem at hand, there are a few factors

to take into consideration. Typically the size should be chosen such

that the smaller problem performs well in terms of solution quality

and solving time. Also, we do not want the sub-problem instances

to be too small as that would affect the performance when we stitch

the solutions to form a solution to the original problem. We let

the number of sub-problems be denoted by 𝑘 . Having solved the

sub-problems, stitching involves combining the solutions. A nice

property of permutation-based problems is that any permutation of

{1, . . . , 𝑛} is a feasible solution. Hence finding good feasible solution
hinges on finding an effective scheme to stitch the solutions of the

clusters together. For example, for TSP, we can define the distance

between two clusters to be the smallest distance of a city in the first

cluster with a city in the second cluster. General decomposition of a

permutation-based constraint optimization problem to a clustering

is a challenging task that is not in the scope of the paper.

4.1 Euclidean Traveling Problem (E-TSP)
We focus on E-TSP (instead of the general TSP) in this paper since

the constrained 𝑘-means algorithm [6] can be applied easily for

clustering.

2226

Techniques to Enhance a QUBO Solver For Permutation-Based Combinatorial Optimization GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

In [18], a QUBO formulation that only involves a quadratic num-

ber of terms in the number of cities is proposed. Without loss

of generality, we can focus on the case where the graph is fully

connected, as we can always introduce edges of infinite distances

otherwise. We let 𝑑𝑢𝑣 be the distance between city 𝑢 and city 𝑣 . We

require 𝑛2 variables for an 𝑛-city instance. The first subscript of 𝑥

represents the city and the second indicates the order that the city

is going to be visited at. That is 𝑥𝑣,𝑗 is the indicator variable that

the city 𝑣 is the 𝑗-th city to be visited. Notice that the constraint

implies that this satisfies the permutation condition.

The formulation is as follows: min𝑥 𝐻𝐵 (𝑥) +𝐴𝐻𝐴 (𝑥), where

𝐻𝐵 (𝑥) =
∑︁

(𝑢,𝑣) ∈𝐸
𝑑𝑢𝑣

𝑛∑︁
𝑗=1

𝑥𝑢,𝑗𝑥𝑣,𝑗+1

describes the total distance travelled and

𝐻𝐴 =

𝑛∑︁
𝑣=1

©­«1 −
𝑛∑︁
𝑗=1

𝑥𝑣,𝑗
ª®¬
2

+
𝑛∑︁
𝑗=1

(
1 −

𝑛∑︁
𝑣=1

𝑥𝑣,𝑗

)
2

(8)

describes the constraints to be a feasible cycle.

For the clustering step, we use the constrained 𝑘-means clus-

tering algorithm [6]. The benefit of this approach is that we have

better control over the size of the clusters suitable for QS.

Let 𝑘 be the number of clusters and largest cluster size be |𝑉𝑐 |.
We define the least cost flip value Δ𝑖 𝑗 between all cluster pairs to

be the least cost of performing 2-opt to stitch the two clusters 𝑖 and

𝑗 together. The time complexity is 𝑂 (𝑘2 |𝑉𝑐 |2). To determine the

ordering of stitching clusters, we solve aminimum cost Hamiltonian

path problem by reusing our QUBO E-TSP model presented above

(except it seeks a minimum Hamiltonian path [18] instead of cycle)

with Δ𝑖 𝑗 on the edges.

4.2 Quadratic Assignment Problem (QAP)
Given 𝑛 facilities and 𝑛 locations, the flow matrix (𝑓𝑖 𝑗) denoting
the flow quantity between facilities 𝑖 and 𝑗 , and a distance matrix

𝑑𝑘𝑙 which denotes the distance (weight) between locations 𝑘 and

𝑙 , the QAP is to find an assignment of facilities to locations that

minimizes the weighted flow.

In [10], the indicator variable 𝑥𝑖 𝑗 is used to denote that the facility

𝑖 is assigned to location 𝑗 . The total flow can be written as a QUBO,

that is wewant tominimize

∑𝑛
𝑖=1

∑𝑛
𝑗=1

∑𝑛
𝑘=1

∑𝑛
𝑙=1

𝑓𝑖 𝑗𝑑𝑘𝑙𝑥𝑖𝑘𝑥 𝑗𝑙 . Again,

we need to impose the permutation constraints as we need to en-

sure that each location is assigned to exactly one facility and each

facility is assigned to exactly one location.

If we have the coordinates of the location and facilities, we can

perform some clustering that is based on the Euclidean metric.

Unfortunately, there is a lack of clustering in the literature for

QAP. We design a clustering scheme as such. For each facility,

we associate it with the sum of the flow values that is associated

with the facility, we then sort them in an increasing order. For

each location, we associate it with the sum of the distances that

is associated with the location, we then sort them in a decreasing

order. We then match the facility that is associated with the high

flow value with the location of low distance. We then compute the

product value of the scores and perform a 1-D clustering on the

scores. If the cluster is too large for the QS, we further divide them

into smaller sub-problem.

Note that there is no stitching required for QAP as the assign-

ments of facilities to the locations is what is required.

5 NUMERICAL EXPERIMENTS
In this section, we present our experimental results. Four sets of

experiments are conducted:

• We investigate the effect of data scaling on TSP solution

quality;

• We compare the relative performance on TSP solution quality

under different parameter tuning approaches.

• We benchmark our approach to solve TSP. First, we compare

the relative performance with direct QS call and with the

popular TSP solver Concorde on TSPLIB [20] as well as hard

Tnm instances. We also compare the relative performance

when using an exact solver (CPLEX) directly instead of a

heuristic QS.

• Finally, we compare the performance of our approach with

qbsolv (running DA) on QAP instances. As baselines, we also

compare against best published results on those instances.

We explain the experimental setup below.

The default QUBO solver is the Fujitsu Digital Annealer Genera-

tion 2 that runs in the Parallel Tempering mode.

For E-TSP clustering, we use the constrained 𝑘-means algorithm

[6] to control the size of each sub-QUBO.

For the model-free PSO approach, the position of the particle

represents the parameter to be tuned. The cost function of the PSO

is set to be the objective function according to the application we

are solving. Besides, we need to tune several hyperparameters for

PSO including the inertia weight 𝜔 , two learning factors 𝑐1 and 𝑐2.

𝜔 controls the contribution rate of the particle’s previous velocity

to the particle’s velocity at the current time step. A combination of

𝑐1 and 𝑐2 determines the convergence rate by balancing the global

and local search capabilities. We update 𝜔 , 𝑐1, and 𝑐2 according to

the linear time varying formulation in [25]. In order to have total 40

parameters evaluated, PSO runs 4 iterations (including the random

initialization) with number of particles equals to 10. The search

space is same as the Bayesian approaches.

The details of the parameter used are summarized in Table 1

where 𝐷max refers to the maximum distance. Our code is available

at https://github.com/BMDroid/Permute-QUBO-Tech.

5.1 Effect of Data Scaling on TSP
Data scaling reduces the variance of the input data describing the

QUBOs. In Figure 2, we illustrate that data scaling improves the

performance of TSP in that the solutions obtained will be strictly

better than those without data scaling.

5.2 Effect of Parameter Tuning on TSP
We perform online parameter tuning on the TSP instances of size

up to 800 obtained from TSPLIB and also on the TSP instances

found in [13]. The x-axis on the both diagrams shows the size of

the input.

2227

https://github.com/BMDroid/Permute-QUBO-Tech

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Siong Thye Goh, Jianyuan Bo, Sabrish Gopalakrishnan, and Hoong Chuin Lau

constraint weight constraint weight constraint weight

pa
th

 c
os

t
w/o preprocessing
w preprocessing w preprocessing

w/o preprocessing

w/o preprocessing
w preprocessing

720 740 760 780 800 800 805 810 815 820 825 830 835 17000 17050 17100 17150 17200 17250 17300 17350 17400 17450

160
0

1700

1800

1900

2000

2100

1600

10000

9000

8000

7000

6000

5000 100000

125000

150000

175000

200000

225000

250000

275000

300000

Constraint Weight

Pa
th

 C
os

t
bayg29 gr48 pr76

w/o preprocessing
w preprocessing

w/o preprocessing
w preprocessing

w/o preprocessing
w preprocessing

Constraint Weight Constraint Weight

Figure 2: Lower objective value is obtained after performing data scaling

(25
, 1

50
]

(15
0,

27
5]

(27
5,

40
0]

(40
0,

52
5]

(52
5,

65
0]

(65
0,

77
5]

(77
5,

90
0]

Instance Size

5.0
6.5
8.0
9.5

11.0
12.5
14.0
15.5
17.0
18.5
20.0

O
pt

im
al

it
y

G
ap

 (
%

)

Hyperopt
Optuna
PSO
Normal
Uniform

(a) Optimality Gap

(25
, 1

50
]

(15
0,

27
5]

(27
5,

40
0]

(40
0,

52
5]

(52
5,

65
0]

(65
0,

77
5]

(77
5,

90
0]

Instance Size

0

610

1221

1831

2442

3052

3663

4273

4884

5494

Tu
ni

ng
 T

im
e

(s
ec

)

Hyperopt
Optuna
PSO
Normal
Uniform

(b) Tuning Time

Figure 3: Optimality gap and tuning time with different tuning approaches for TSPLIB instances

(50
, 7

5]

(75
, 1

00
]

(10
0,

12
5]

(12
5,

15
0]

(15
0,

17
5]

(17
5,

20
0]

Instance Size

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

O
pt

im
al

it
y

G
ap

 (
%

)

Hyperopt
Optuna
PSO
Normal
Uniform

(a) Optimality Gap

(50
, 7

5]

(75
, 1

00
]

(10
0,

12
5]

(12
5,

15
0]

(15
0,

17
5]

(17
5,

20
0]

Instance Size

0

172

345

517

690

862

1035

1207

1380

1552

Tu
ni

ng
 T

im
e

(s
ec

)

Hyperopt
Optuna
PSO
Normal
Uniform

(b) Tuning Time

Figure 4: Optimality gap and tuning time of TSP instances from [13]

Figure 3 shows the optimality gap, which is defined to be

obtained solution − optimal solution

optimal solution

× 100%

and tuning time when we apply the five online parameter tun-

ing schemes presented earlier on the TSPLIB instances and Figure

4 shows the corresponding result on [13]. Tuning time refers to

the average run time for solving the respective problem instances,

which is incurred due to multiple calls to the QS as the underlying

parameter is being tuned. For simplicity, we group the instances

according to their size in reporting the optimality gap. The opti-

mality gap can be obtained as our test problems are obtained from

a repository where the optimal values of the instances have been

reported. For both experiments, We observe that the optimality gap

is comparable with each other for most instances, even though on

average, Optuna performs the best for tsplib and PSO performs the

best for tnm instances. In terms of computational time, PSO and

the statistical approaches are faster than Hyperopt and Optuna.

We observe that tuning the penalty parameter uniformly with

ratio between 0.5 to 1 of the maximum weight length suffices to ob-

tain good results experimentally. However, this does not imply that

careful tuning is not required. In general, a helpful principle we read

from our experiments is that we need to first narrow the promising

search space, from which we can perform a simple scheme such as

uniform search to find the most appropriate values.

2228

Techniques to Enhance a QUBO Solver For Permutation-Based Combinatorial Optimization GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

tnm
52

tnm
55

tnm
58

tnm
61

tnm
64

Instance

0
10
20
30
40
50
60
70
80
90

100

O
pt

im
al

it
y

G
ap

 (
%

) framework
direct
concorde

(a) Tnm Instances

wi2
9

eil5
1

st7
0

eil7
6

Instance

0
10
20
30
40
50
60
70
80
90

100

O
pt

im
al

it
y

G
ap

 (
%

)

framework
direct
concorde

(b) TSPLIB Instances

Figure 5: Comparison of performance of our framework vs direct QS call

Instance size

O
pt

im
al

it
y

G
ap

 (
%

)

0

20

40

60

80

100

0 100 200 300 400 500 600

CPLEX
DA

(a) Optimality Gap for TSP

Instance size

R
un

ni
ng

 T
im

e
(s

ec
) DA

CPLEX

6000

0

3000

1000

2000

5000

4000

7000

0 100 200 300 400 500 600

(b) Running Time for TSP

Figure 6: Comparison of CPLEX and QS run time by setting CPLEX early termination condition to reach DA optimality gap

Digital Annealer
Iterations 10

7

Replica 72

TSP clustering
Minimal cluster size, 𝜏 7

Maximum cluster size, 𝜇 30

Bayesian Tuner Approaches
Number of trials 40

Range [0.5, 1] · 𝐷max

PSO hyperparameters
Inertia weight 𝜔max 0.5

Inertia weight 𝜔min 0.25

Learning factor 𝑐1,max 0.5

Learning factor 𝑐1,min 0.25

Learning factor 𝑐2,max 0.9

Learning factor 𝑐3,max 0.6

Statistical Approaches
Normal Distribution N(𝜇 = 0.7594, 𝜎2 = 0.0141) · 𝐷max .

Uniform Distribution U(0.5, 1) · 𝐷max

qbsolv
sub-QUBO size 900

Optuna trials 20

Table 1: Parameter values used in our numerical experiments.

O
pt

im
al

it
y

G
ap

 (
%

)

Instance size

DA
CPLEX

10

20

30

40

50

100 200 300 400 500 600

Figure 7: Comparison of CPLEX and QS optimality gap with
run time limit of 2 minutes

5.3 Comparison with Other Approaches on TSP
Next we present two sets of experiments.

First, we compare the relative performance with direct call to

QS and with the dedicated TSP solver Concorde. Note that due to

the Digital Annealer’s hardware limitation, the QS cannot directly

solve instances larger than 90 cities. Hence, for purpose of direct

comparison, we present results in Figure 5 based on instances of up

to 90 cities from two data repositories - the Tnm instances which

represents hard instances for Concorde on the left and the TSPLIB

instances on the right. Using the same computational budget, we

observe that the quality of solution of our approach is better, achiev-

ing an optimality gap that is significantly lower than if we directly

2229

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Siong Thye Goh, Jianyuan Bo, Sabrish Gopalakrishnan, and Hoong Chuin Lau

lipa
90
a

lipa
90
b
sko
90

sko
10
0a

sko
10
0b

sko
10
0c

sko
10
0d

sko
10
0e

sko
10
0f

tai
10
0a

tai
10
0b
wil
10
0

Instance

0

5

10

15

20

25

30

35

40

45

50
Ps

eu
do

-O
pt

im
al

it
y

G
ap

 (
%

)
gap
qbsolv
ours

0

1500

3000

4500

So
lv

in
g

Ti
m

e
(s

ec
)

time
qbsolv
ours

Figure 8: Comparison of performance using qbsolv vs our
approach

use QS. We observe that when the instance size is more than 50

cities, the optimality gap can be more than 35% without using our

approach, while it is less than 10% for our approach.

Note that we do not claim that our approach is the best in solving

TSP, but to illustrate without any algorithmic trick (such as adaptive

k-Opt with tabu search, as found in LKH), our approach can achieve

solutions with very small optimality gap.

On the second set of experiments, we study the relative perfor-

mance if we were to replace QS with an exact solver such as CPLEX

instead. It is known that the required run time for an exact solver

can be prohibitively long. In order to compare the performance of

these two solvers fairly, we consider two experiment settings.

In the first setting, we solve each sub-QUBO model using CPLEX

by setting the run time limit to be 2-minutes. The result is as shown

in Figure 8. The result shows that within the time limit, 𝑄𝑆 out-

perfoms CPLEX solver and the gap grows as the instance such

increases. In the second experiment setting, we fix the optimality

gap and examine the computational budget required by the solvers

to achieve a specified gap. For this purpose, after solving the E-TSP

instances using QS, we note the optimality gap attained. Note that

the optimality gap can be derived, since the problem instances are

obtained from a repository with known optimal solutions. We then

set a maximum time limit of 5 minutes in solving each sub-QUBO

using CPLEX. Unlike the previous setting, another stopping condi-

tion that we use on CPLEX is that we set the required optimality

gap for CPLEX to match the optimality gap obtained by QS. The

result is as shown in Figure 6. Again, QS attains a smaller optimality

gap within a shorter run time. In summary, we observe that QS

performs better than CPLEX in solving the sub-QUBOs with either

a fixed computational budget, or a fixed optimality gap.

5.4 Comparison with qbsolv on QAP
Finally, to demonstrate the generality of our approach, we turn

to QAP. Here, we compare our approach with DWAVE’s qbsolv, a

state-of-the-art framework for solving QUBOs. Note that qbsolv

itself is not a solver, but a framework that performs divide and

conquer on a QUBO. Unlike our approach, one needs to construct

the entire matrix explicitly as input to qbsolv. Furthermore, qbsolv

does not ensure feasibility, since there is no notion of constraint

violation.

The QAP instances and their best known solutions are obtained

from QAPLIB [7], and in the interest of space, we report results of

large-scale instances sampled randomly from the library. Note that

the best-known solutions for the selected instances are attained

by various heuristic methods including Genetic Hybrids [9] and

Robust Tabu Search [26]. These solutions are termed as “pseudo-

optimal" solutions in [27] (since optimality has not been proven). To

compare with these approaches, we compute the pseudo-optimality

gap and the results are shown in Figure ??. Even though the pseudo-

optimality gaps are significantly large compared with best-known

solutions, we observe that the solution quality produced by qbsolv is

very similar to our approach. And in terms of run time, we observe

that our approach is at least 5 times faster (both approaches running

DA as the QUBO solver).

6 CONCLUSION
We have proposed 3 techniques to improve the quality of solu-

tion of QS. These techniques can be used in a divide-and-conquer

framework to solve large instances of combinatorial optimization

problems. Experimentally, our approach yields solutions with very

small optimality gaps on E-TSP instances (comparable with dedi-

cated solver Concorde), and outperforms qbsolv, the state-of-the-art

QUBO divide and conquer framework on QAP instances, with faster

run time. Interestingly, our study shows that by using a divide-and-

conquer framework along with our techniques, it outperforms the

execution environment where we feed the problem to the QS di-

rectly. This could be attributed to the fact that as the problem size

increases, the heuristic QS tends to perform worse due to vari-

ous reasons such as large search space. Regrettably, the quality of

solutions obtained by our approach for QAP is not entirely satisfac-

tory relative to the best-known results, obtained albeit by multiple

hand-crafted meta-heuristics. For our approach to be useful, the

optimality gap needs to be narrowed further, perhaps with better

parameter tuning and a stronger QUBO solver.

Interestingly, since our proposed ideas in this paper is agnostic

to QUBO solvers, one could implement QS on a quantum hardware

to derive a hybrid quantum-classical approach. When quantum

annealers become more commercially viable, such approach can

potentially disrupt exact solvers like CPLEX and Gurobi in solving

large-scale optimization problems via mathematical modeling.

ACKNOWLEDGEMENTS
This research is funded by the National Research Foundation Singa-

pore under its Corp Lab @ University scheme and Fujitsu Limited

as part of the A*STAR-Fujitsu-SMU Urban Computing and Engi-

neering Centre of Excellence.

2230

Techniques to Enhance a QUBO Solver For Permutation-Based Combinatorial Optimization GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 2623–2631. https://doi.org/10.1145/3292500.

3330701

[2] David Applegate, Ribert Bixby, Vasek Chvatal, andWilliam Cook. 2006. Concorde

TSP solver.

[3] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hiro-

taka Tamura, and Helmut Katzgrabeer. 2019. Physics-inspired optimization for

quadratic unconstrained problems using a digital annealer. Frontiers in Physics 7
(2019), 48. https://doi.org/10.3389/fphy.2019.00048

[4] James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A python

library for optimizing the hyperparameters of machine learning algorithms. In

Proceedings of the 12th Python in Science Conference. Citeseer, 13–20. https:

//doi.org/10.1088/1749-4699/8/1/014008

[5] Endre Boros, Peter L Hammer, and Gabriel Tavares. 2006. Preprocessing of

unconstrained quadratic binary optimization. (2006).

[6] Paul S Bradley, Kristin P Bennett, and Ayhan Demiriz. 2000. Constrained k-means

clustering. Microsoft Research, Redmond 20 (2000).

[7] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. 1997. QAPLIB–a quadratic

assignment problem library. Journal of Global optimization 10, 4 (1997), 391–403.

https://doi.org/10.1016/0377-2217(91)90197-4

[8] IBM ILOG Cplex. 2009. V12. 1: User’s Manual for CPLEX. International Business
Machines Corporation 46, 53 (2009), 157.

[9] Charles Fleurent and Jacques A Ferland. 1994. Genetic hybrids for the quadratic

assignment problem. Quadratic assignment and related problems 16 (1994), 173–
187. https://doi.org/10.1090/dimacs/016/08

[10] Fred Glover, Gary Kochenberger, Rick Hennig, and Yu Du. 2022. Quantum

Bridge Analytics I: a tutorial on formulating and using QUBO models. Annals of
Operations Research (2022), 1–43. https://doi.org/10.1007/s10288-019-00424-y

[11] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:

//www.gurobi.com

[12] Michael Held and Richard M Karp. 1970. The traveling-salesman problem and

minimum spanning trees. Operations Research 18, 6 (1970), 1138–1162. https:

//doi.org/10.1007/BF01584070

[13] Stefan Hougardy and Xianghui Zhong. 2021. Hard to solve instances of the

euclidean traveling salesman problem. Mathematical Programming Computation
13, 1 (2021), 51–74. https://doi.org/10.1007/s12532-020-00184-5

[14] Kazuki Ikeda, Yuma Nakamura, and Travis S Humble. 2019. Application of

quantum annealing to nurse scheduling problem. Scientific reports 9, 1 (2019),
1–10. https://doi.org/10.1038/s41598-019-49172-3

[15] Roy Jonker and Anton Volgenant. 1987. A shortest augmenting path algorithm for

dense and sparse linear assignment problems. Computing 38, 4 (1987), 325–340.

https://doi.org/10.1007/BF02278710

[16] Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, AvradipMandal, Sarvagya Upadhyay,

Ilya Safro, and Arnab Roy. 2019. On modeling local search with special-purpose

combinatorial optimization hardware. arXiv preprint arXiv:1911.09810 (2019).
[17] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto,

Peter Hahn, and Tania Querido. 2007. A survey for the quadratic assignment

problem. European journal of operational research 176, 2 (2007), 657–690. https:

//doi.org/10.1016/j.ejor.2005.09.032

[18] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014), 5. https://doi.org/10.3389/fphy.2014.00005

[19] Muhammad Nawaz, E Emory Enscore Jr, and Inyong Ham. 1983. A heuristic

algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11, 1
(1983), 91–95. https://doi.org/10.1016/0305-0483(83)90088-9

[20] Gerhard Reinelt. 1991. TSPLIB—A traveling salesman problem library. ORSA
journal on computing 3, 4 (1991), 376–384. https://doi.org/10.1287/ijoc.3.4.376

[21] Dian Palupi Rini, Siti Mariyam Shamsuddin, and Siti Sophiyati Yuhaniz. 2011.

Particle swarm optimization: technique, system and challenges. International
journal of computer applications 14, 1 (2011), 19–26. https://doi.org/10.5120/ijais-

3651

[22] Tuhin Sahai, Anurag Mishra, Jose Miguel Pasini, and Susmit Jha. 2020. Estimating

the density of states of Boolean satisfiability problems on classical and quan-

tum computing platforms. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 1627–1635.

[23] Alice E Smith, David W Coit, Thomas Baeck, David Fogel, and Zbigniew

Michalewicz. 1997. Penalty functions. Handbook of evolutionary computation 97,

1 (1997), C5.

[24] Tobias Stollenwerk, Elisabeth Lobe, and Martin Jung. 2019. Flight Gate As-

signment with a Quantum Annealer. In Quantum Technology and Optimization
Problems, Sebastian Feld and Claudia Linnhoff-Popien (Eds.). Springer Interna-

tional Publishing, Cham, 99–110. https://doi.org/10.1007/978-3-030-14082-3_9

[25] P. N. Suganthan. 1999. Particle swarm optimiser with neighbourhood operator.

In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Vol. 3. 1958–1962 Vol. 3. https://doi.org/10.1109/CEC.1999.785514

[26] Éric Taillard. 1991. Robust taboo search for the quadratic assignment problem.

Parallel computing 17, 4-5 (1991), 443–455. https://doi.org/10.1016/S0167-8191(05)
80147-4

[27] Eric D Taillard. 1995. Comparison of iterative searches for the quadratic assign-

ment problem. Location science 3, 2 (1995), 87–105. https://doi.org/10.1016/0966-

8349(95)00008-6

[28] Peng Tian, Jian Ma, and Dong-Mo Zhang. 1999. Application of the simulated

annealing algorithm to the combinatorial optimisation problemwith permutation

property: An investigation of generation mechanism. European Journal of Opera-
tional Research 118, 1 (1999), 81–94. https://doi.org/10.1016/S0377-2217(98)00308-
7

[29] Tony T Tran, Minh Do, Eleanor G Rieffel, Jeremy Frank, Zhihui Wang, Bryan

O’Gorman, Davide Venturelli, and J Christopher Beck. 2016. A hybrid quantum-

classical approach to solving scheduling problems. In Ninth Annual Symposium
on Combinatorial Search.

[30] Tony T Tran, Zhihui Wang, Minh Do, Eleanor G Rieffel, Jeremy Frank, Bryan

O’Gorman, Davide Venturelli, and J Christopher Beck. 2016. Explorations of

quantum-classical approaches to scheduling a mars lander activity problem. In

Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
[31] Salvador E Venegas-Andraca, William Cruz-Santos, Catherine McGeoch, and

Marco Lanzagorta. 2018. A cross-disciplinary introduction to quantum annealing-

based algorithms. Contemporary Physics 59, 2 (2018), 174–197.
[32] Davide Venturelli, D Marchand, and Galo Rojo. 2016. Job shop scheduling solver

based on quantum annealing. In Proc. of ICAPS-16 Workshop on Constraint Satis-
faction Techniques for Planning and Scheduling (COPLAS). 25–34.

[33] Shengbin Wang, Weizhen Rao, and Yuan Hong. 2018. A distance matrix based

algorithm for solving the traveling salesman problem. Operational Research
(2018), 1–38. https://doi.org/10.1007/s12351-018-0386-1

2231

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1016/0377-2217(91)90197-4
https://doi.org/10.1090/dimacs/016/08
https://doi.org/10.1007/s10288-019-00424-y
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/BF01584070
https://doi.org/10.1007/BF01584070
https://doi.org/10.1007/s12532-020-00184-5
https://doi.org/10.1038/s41598-019-49172-3
https://doi.org/10.1007/BF02278710
https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.5120/ijais-3651
https://doi.org/10.5120/ijais-3651
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1109/CEC.1999.785514
https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1016/0966-8349(95)00008-6
https://doi.org/10.1016/0966-8349(95)00008-6
https://doi.org/10.1016/S0377-2217(98)00308-7
https://doi.org/10.1016/S0377-2217(98)00308-7
https://doi.org/10.1007/s12351-018-0386-1

	Abstract
	1 Introduction
	2 Permutation-based Problems
	3 Techniques to Improve Solution Quality
	3.1 Data Scaling
	3.2 Penalty Parameter Tuning
	3.3 Projection to the Feasible Space

	4 Application to TSP and QAP
	4.1 Euclidean Traveling Problem (E-TSP)
	4.2 Quadratic Assignment Problem (QAP)

	5 Numerical Experiments
	5.1 Effect of Data Scaling on TSP
	5.2 Effect of Parameter Tuning on TSP
	5.3 Comparison with Other Approaches on TSP
	5.4 Comparison with qbsolv on QAP

	6 Conclusion
	References

